

Overview

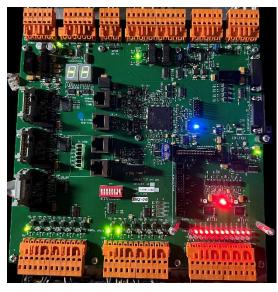
The new **SIGMA** Testing System is yet another giant leap forward in Creep and Stress Rupture testing from Applied Test Systems. The new system encompasses new machines, control hardware and WinCCS software.

Gen 3 Hardware:

Faster Microcomputer: Faster single chip microcomputer with built in memory and program storage flash memory. The new processor is over 100 times faster than the GEN1 / GEN2 processors. This improves all aspects of the controller's operation.

Advanced Speed Controls: Previous systems had the manual load speed potentiometer connected to an external motor controller. This led to many test issues where customers did not reset the manual potentiometer back to normal running position when starting a test. The new system has a direct input for the manual load speed potentiometer, so the software determines when to use the input from it. This prevents any issues with operator error.

Temperature and Humidity Sensor: A tester mounted laboratory NIST traceable temperature and humidity monitor has been added which is automatically logged by the system with the test data, so users have a continuous record of the laboratories temperature and humidity embedded in their test data. This same sensor is used to capture the ambient conditions during calibration and verification procedures.


Improved Thermocouple Measurement: These new units also have a faster

thermocouple reading rate of 30 readings per minute versus GEN1 / GEN2 one reading per minute. This significantly improves furnace response after transient events, such as short-term power failures.

Cold Stepped Loading: Cold Stepped Creep loading has been added which allows an operator to cold load the specimen at any time before a test is started and obtain a report. This allows the operator to evaluate the extensometry setup before starting the test. This cold load may also be specified as part of the actual test as a further check of extensometer setup.

Stepper Motor Drive: New integrated Stepper Motor control for more precise load control and hot / cold stepped loading. The new stepper motor control is a huge leap in load control capabilities allowing precise load control and stress relaxation tests to be handled on the same machine.

Improved Load Measurement: Improved load cell measurement system which allows faster load control adjustments.

Sampling rate: Improved data sampling rates 60 per minute or once per seconds.

Super Capacitor: The new hardware uses a super capacitor instead lithium battery for calendar clock backup. This means no batteries to replace, and no shipping restrictions placed on the actual hardware. By removing Lithium batteries, the control boards can now be shipped via air anywhere and spare boards do not have a battery shelf life.

Solid State Memory: Solid state ferro magnetic FRAM is utilized for reading and test parameter memory instead of lithium battery backup RAM. This provides a far better storage mechanism for readings in the event of a PC failure. Note: This memory is used for reading storage when the host computer is offline.

Fault Display: Digital onboard fault display provides advanced diagnostics enabling faster troubleshooting.

32-bit Encoder I/F: New 32-bit optical digital encoder measurement interface, that future proofs the hardware for longer and/or higher resolution optical digital encoders.

Analog Outputs: Analog outputs for furnace control used for high temperature furnaces with analog power controls.

Light Bar: Manufacturing style light bar to clearly show the machine and/or test status from most locations throughout the lab.

Cyclic Stress Testing Option: Allows the user to specify a cyclic unloading of the specimen during the test. The operation can be specified to be for the entire test or a specific number of cycles. This option combined with the **SIGMA** controller allows for higher speed data acquisition during the actual load and unload of the specimen so that an accurate profile can be graphed of the load on the specimen.

Stress Relaxation Option: Performs Constant Stress, Constant Strain or Constant Strain per ASTM E328. The new **SIGMA** Controller with it's higher speed computing, data acquisition and stepper load train control allow for precise controls in stress and strain mode previously unattainable.

Gen 3 Portable Display:

OLED Display: High resolution OLED display improves visibility in all lighting conditions.

Jog Controls: Machine Jog Controls with indicator LEDs.

Faster Microcomputer: Faster processor for smoother display operation.

Backwards Compatible: Works with GEN2 and GEN3 controllers.

Languages: Directly supports many language fonts.

Version 8 WinCCS

Optional LIMS Integration: An optional Laboratory Information Management System (LIMS) integration feature has been added to the WinCCS system. This allows a customer's LIMS system to import specimen, test specification, specimen measurements, thermocouple batch information, etc. to the WinCCS system and also export complete test records to the LIMS. All of the data exchange is via XML data files to ease implementation. The LIMS integration also supports bar code scanning of specimen bags to reduce errors.

Frame State Specimen Name Customer Traveler #1 Sepoint Average Top Middle Bottom User Stress Time Creep (%) Jarms Frame 1 Run N178-1229.06X52 116 AA-1 9968 1222.0 12315 12317 721 00.0 -0.45 00.0 Frame 3 Ramp N178-1229.06X53 116 AA-3 9968 1222.0 12315 12312 721 00.0 -0.45 00.0 100.0 Frame 4 Ram HA35X-100.3X6X3-1 117 AA-4 8688 1020.0 17962 1792.2 35.0 067.0 11.2 Frame 7 Ram HA35X-100.3X6X3-1 117 AA-4 8688 1020.0 17962 1792.2 35.00 07.0 11.2 Frame 7 Ram HA35X-100.3X6X3-1 118 AA-6 7778 100.1 1025.0 1025.1 1025.0 1025.1 1025.0 22.1 135.00 23.0 21 135	-			10.20 million	N. 20. 2.2	1000 W200		2.20	2000	s.acres.X	1255.02	2575	20-0	2.02	
Frame 2 Soak N/118-122-90KS12 116 AA-2 9998 12220 12915 12915 12912 721 90.10 -0.45 0.00 Frame 3 Ramp N/118-12290KS12 116 AA-3 9998 12220 12915 12915 12912 721 90.10 -0.45 0.00 Frame 4 Run HASX-1800-33KS41 117 AA-4 8889 1800.0 17995 17996 17992 722 0.10 0700 1.12 Frame 5 Run HASX-1800-33KS42 117 AA-5 8889 1800.0 1013 18012 721 1.00 125.00 123 Frame 6 Unload NR25-1650-45KS12 118 AA-7 7778 4481 455.5 448.6 440.1 721 100 125.00 292 1290 299 Frame 7 Run N4052-1650-45KS1.3 118 AA-7 7778 1025.1 1025.1 125.0 1290 0.99 78 <		State	Specimen Name	Customer	Traveler #	Heat #			Тор	Middle	Bottom	User	Stress		
Frame 3 Ramp INT18-1282-90KSL3 116 AA.3 9998 1222.0 1055.6 1053.4 1050.2 72.2 8.90 0.00 0.00 Frame 4 Run HASX-1800.35KSL2 117 AA.4 8889 1800.0 1095.5 1799.5 1799.2 72.2 8.90 0.00 0.00 Frame 6 Run HASX-1800.35KSL2 117 AA.4 8889 1800.0 1001.3 1801.5 1801.3 1001.2 72.1 35.20 945.00 15.3 Frame 7 Run HASX-1800.35KSL2 118 AA-6 7778 1650.0 72.1 1.00 123.00 2.22 Undat Frame 7 Run NR025-1660.45KSL2 118 AA-7 7778 1650.0 72.3 72.3 0PEN 72.1 1.00 135.00 0.88 Frame 9 Run NR01-102-135KSL1 119 AA.9 7777 1025.1 1025.1 1024.9 72.1 1.00 135.00 3.03															
Frame 4 Run H43X-1000.35(Sk)=1 117 AA-4 889 1000.0 1799.5 1799.6 1799.6 1799.2 72.2 35.10 607.00 1.12 Frame 6 Run H43X-1000.35(Sk)=1 17 AA-8 8889 1000.0 1001.3 1001.5 1013.1 1015.1 1013.1 1015.1 1012.1 721.1 35.20 945.00 2.92 Unbad Frame 6 Unbod N025-1600-45(Sk)=1 118 AA-6 777.78 448.1 455.5 448.6 440.1 72.1 1.00 125.00 2.92 Unbad Frame 7 Run N025-1600-45(Sk)=3 118 AA-8 777.78 72.3 72.3 72.1 1.00 15.00 0.88 Frame 9 Run N040-1025-3153(Sk)=1 119 AA-8 777.78 102.5 07.81 72.1 1.00 15.00 0.88 Frame 10 Rolf Test N24-650-145(Sk)=1 120 AA-11 5566 650.0 760.7															
Frame 6 Hum HASX-1800-395(S)-2 117 AA-5 8889 1800.0 1801.3 1801.5 1801.3 1801.2 72.1 73.20 945.00 15.3 Frame 7 Run H025-1650-45(S)-2 118 AA-7 7778 443.1 455.5 448.6 40.1 72.1 1.00 125.000 2.92 Undad Frame 7 Run H025-1650-45(S)-2 118 AA-7 7778 1650.0 72.3 72.3 0.72 1.00 135.00 0.88 Frame 9 Run H045-1650-45(S)-1 110 AA-9 6777 1025.0 1025.1 1025.2 0.72 1.00 135.00 0.88 Frame 10 Ide M24-650-145(S)-1 120 AA-11 5566 650.0 670.0 778 72.1 1.00 155.00 5.00 Frame 11 Post Test M24-650-145(S)-1 120 AA-11 5566 650.0 650.0 650.8 642.7 641.7 1.00 155.00															
Frame 6 Utobad NR325-1650-45532.11 AA-6 7778 448.1 455.5 48.8 440.1 72.1 100 125.000 2.92 Uribad Frame 7 Run NR325-1650-45532.118 AA-7 7778 1650.0 72.1 100 125.00 2.92 Uribad Frame 8 Post Test NR325-1650-45533.11 119 AA-9 7778 1025.1 1025.2 OPEN 72.3 72.1 100 135.00 0.88 Frame 9 Run N8405-1650-4553458.1 119 AA-9 6777 1025.10 1025.1 1025.2 OPEN OPEN 72.8 72.0 0.99 50.0 0.99 Frame 10 Idle M246-650.14553.11 10 AA-11 5566 650.0 650.2 649.7 78.7 72.1 10.0 105.00 5.00 Frame 12 Run M246-650.14553.12 AA-12 5566 650.0 650.2 649.7 72.1 14.0 1.00 0.00 0.00 11.44															
Frame 7 Run NN25-1650-455K3-1 118 AA-7 7778 1500 72.3 72.3 0PEN 72.3 72.1 100 135.00 0.88 Frame 9 Run NN01-1025-1358K3-1 119 AA-8 7777 1025.1 1025.2 0PEN 72.3 72.3 72.1 1.00 135.00 0.88 Frame 9 Run NN01-1025-1358K3-1 119 AA-8 6777 102.50 1025.1 102.52 0PEN 72.1 1.00 105.00 5.00 Frame 10 Run M246450-145K3L1 120 AA-11 5566 650.0 650.2 660.2 660.2 660.2 660.2 660.0 660.2 660.0 77.1 143.6 132.00 3.13 Frame 13 Run M246450-145K3L3 120 AA-15 5566 650.0 650.2 640.7 72.1 143.6 132.00 3.13 Frame 14 Run M246450-145K3L3 120 AA-15 5566 650.0							1000.0								
Frame 8 Post Test N825-1660-45K33 118 AA.8 7778 723 723 724 723 723 721 100 13500 0.88 Frame 9 kdl NM1-1025.135KS1 119 A.9 6777 1025.0 1025.1 1025.2 723 721 120 125.00 129 Frame 10 kdl NN NA OPEN OPEN 721 130.00 185.00 99 Frame 11 Potte M246-650.145KS1 120 AA.11 5566 650.0 650.2 650.8 650.2 649.5 721 130.01 185.00 313 Frame 12 Run M246-650.145KS12 120 AA.12 5566 650.0 650.0 650.5 649.5 649.5 721 14.04 130.0 309 Frame 13 Run M246-650.145KS14 120 AA.14 5566 650.0 649.5 649.2 649.2 721 14.60 100.0 000 000							1850.0	440.1	433.3	440.0	440.1		1.00	12.00.00	2.02 United
Frame 19 Run NM01-1025-135KS-11 119 A-9 6777 1025.0 1025.1 1025.2 OPEN 1024.9 72.1 135.02 129.00 9.99 Frame 10 bite NA A-9 NA A-9 NA OPEN OPEN 72.1 135.02 129.00 9.99 Frame 11 Post Test M246-850-145KSH 120 A-11 5566 650.0 78.0 77.8 72.1 140.0 165.00 3.03 Frame 12 Run M248-850-145KSH 120 A-13 5566 650.0 650.0 650.6 650.0 650.4 656.2 656.4 656.2 656.4 72.1 145.6 135.00 3.13 Frame 13 Run M248-850-145KSH 120 A-15 5566 650.0 650.5 649.6 72.1 144.56 135.00 3.09 Frame 16 Nun M258-800-25KSH 120 A-16 4443 800.0 800.7 800.1 72.1							1030.0	72 3	72 3	OPEN	72 3		1.00	135.00	0.88
Frame 10 Idle NA NA OPEN OPEN OPEN TZ1 Frame 11 PostTest M246-650-145KSL1 120 AA.11 5566 650.0 78.0 77.8 72.1 1.00 165.00 500 Frame 12 Run M246-650-145KSL2 120 AA.12 5566 650.0 650.2 649.7 72.1 1.40 1.05.00 3.13 Frame 13 Run M246-650-145KSL3 120 AA.13 5566 650.0 650.2 649.6 72.1 1.45.01 1.30 0.00 0.00 Frame 14 Ramp M246-650-145KSL4 120 AA.14 5566 650.0 658.8 649.2 64.9 7.21 1.44.0 1.00 0.00 0.00 Frame 15 Soak M246-650-145KSL4 120 AA.15 5566 650.0 640.3 649.2 7.64.9 7.1 1.44.0 1.00 0.00 Frame 16 Run WASP400.25KSL5 121 AA.16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1025.0</td> <td></td> <td>1025.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							1025.0		1025.2						
Frame 11 Post Test M246-850-145KSI-1 120 AA-11 5566 650.0 78.0 78.0 77.8 72.1 100 165.00 500 Frame 12 Run M246-850-145KSI-2 120 AA-12 5596 650.0 650.6 650.2 649.7 72.1 145.04 135.00 313 Frame 13 Run M246-850-145KSI-2 120 AA-13 5596 650.0 650.6 649.2 649.6 72.1 145.00 313 Frame 14 Ramp M246-850-145KSI-1 120 AA-14 5566 650.0 650.8 649.2 649.6 72.1 144.04 13.00 309 Frame 15 Soak M246-850-145KSI-1 120 AA-15 5566 650.0 649.8 642.2 649.9 72.1 14.40 -1.00 0.00 Frame 16 Run WASF-800-25KSI-1 12.1 AA-16 4443 800.0 800.2 800.2 72.1 14.60 -1.00 0.00			1001-1023-133N3H	110		0111							100.02	129.00	0.00
Frame 12 Run M2464650-145KS12 120 AA-12 5566 650.0 650.2 660.5 649.0 72.1 1450.61 135.00 3.13 Frame 13 Run M2464650-145KS13 120 AA-13 5566 650.0 650.5 649.6 646.6 72.1 14.50.4 135.00 3.09 Frame 14 Ramp M2464650-145KS14 120 AA-14 5566 650.0 549.9 359.6 354.2 72.1 14.45.0 0.00 0.00 Frame 15 Soak M2464650-145KS15 120 AA-16 5566 650.0 649.8 649.2 648.9 72.1 14.40 100 0.00 Frame 16 Run WA54650-145KS15 121 AA-16 4443 800.0 800.2 80.12 72.1 14.0 100 0.00 Frame 16 Run WA548600-25KS12 121 AA-17 4443 800.0 800.2 800.2 72.1 12.50.6 1022.00 4.11 </td <td></td> <td></td> <td>M248 850 145KSL1</td> <td>120</td> <td>00.11</td> <td>5566</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td>165.00</td> <td>5.00</td>			M248 850 145KSL1	120	00.11	5566							1.00	165.00	5.00
Frame 13 Run M2464650-1450S1-3 120 AA.13 5566 650.0 650.5 649.9 646.6 72.1 14.49.6 132.00 30.9 Frame 13 Run M2464560-1450S1-5 120 AA.14 5566 650.0 659.8 567.3 542.2 72.1 14.49.6 132.00 0.00 Frame 15 Soak M246560-145KS15 120 AA.15 5566 650.0 649.3 649.8 649.2 648.9 72.1 14.40 1.00 0.00 Frame 16 Run WASF-800-25KS1-1 121 AA.16 4443 800.0 800.2 801.2 801.2 801.2 42.1 14.00 1.00 42.5 Frame 17 Run WASF-800-25KS1-1 121 AA.16 4443 800.0 800.2 800.2 70.2 1.21 16.00 42.5 Frame 18 Run WASF-800-25KS1-1 121 AA.18 4443 800.0 551.7 555.6 551.2 551.2															
Frame 14 Ramp M248-650-145KSH4 120 AA-14 5566 650.0 358.9 359.8 356.7 354.2 72.1 14.50 0.00 0.00 Frame 15 Soak M248-650-145KSH5 120 AA-15 5566 650.0 649.8 649.2 649.8 642.2 72.1 14.40 100 0.00 Frame 16 Run WASP-800-25KSH 121 AA-16 4443 800.0 800.2 800.2 72.1 12.60 1021/00 4.25 Frame 17 Run WASP-800-25KSH 121 AA-16 4443 800.0 800.2 800.2 800.1 72.1 12.60 1021/00 4.25 Frame 18 Run WASP-800-25KSH 121 AA-17 4443 800.0 709.7 799.6 72.1 2.507 992.00 3.92 Frame 18 Run WASP-800-25KSH 121 AA-19 4443 800.0 551.7 556.6 542.0 72.1 2.507 992															
Frame 15 Soak M264.650.145KS15 120 AA.15 5566 660.0 649.3 640.8 640.2 648.9 72.1 14.40 .100 0.00 Frame 16 Run WASP-800.25KS1.1 121 AA.16 4443 800.0 800.7 801.1 800.7 20.2 72.1 12.60 10221.00 425 Frame 17 Run WASP-800-25KS1.2 121 AA.17 444.3 800.0 800.2 800.2 80.1 72.1 25.06 10221.00 4.11 Frame 18 Run WASP-800-25KS1.3 121 AA.18 444.3 800.0 799.7 799.6 72.1 25.06 10221.00 4.11 Frame 18 Run WASP-800-25KS1.4 121 AA.18 444.3 800.0 551.7 556.6 551.3 564.2 72.1 2.60 10221.00 9.92 Frame 18 Run WASP-800-25KS1.4 121 AA.18 800.0 551.7 556.6 551.3 564.2 <td></td>															
Frame 16 Run WASP-000-25K81-1 121 AA-10 4443 800.0 800.7 801.1 800.7 72.1 25.06 10221.00 4.25 Frame 17 Run WASP-000-25K83-1 121 AA-17 4443 800.0 800.2 800.2 800.2 800.2 800.1 72.1 25.06 10221.00 4.25 Frame 18 Run WASP-000-25K83-3 121 AA-18 4443 800.0 799.7 799.8 799.7 79.6 72.1 25.07 992.00 3.92 Frame 19 Ramp WASP-000-25K83-4 121 AA-19 4443 800.0 51.7 55.6 51.3 51.4 2.1 2.40 0.00 0.00			M246-650-145KSL5	120											
Frame 17 Run WASP-800-25KSI-2 121 AA-17 4443 800.0 800.2 800.2 800.1 72.1 25.07 10202.0 4.11 Frame 18 Run WASP-800-25KSI-3 121 AA-18 4443 800.0 799.7 799.8 72.1 25.07 9992.00 3.92 Frame 19 Ramp WASP-800-25KSI-3 121 AA-19 4443 800.0 55.16 56.13 564.2 7.21 2.40 0.00 0.00															
Frame 18 Run WASP-800_25KSL3 121 AA-18 4443 800.0 799.7 799.8 799.7 799.6 72.1 25.07 9992.00 3.92 Frame 19 Ranp WASP-800_25KSL4 121 AA-19 4443 800.0 5517 5556 5513 5542 72.1 2.40 0.00 0.00															
Frame 19 Ramp WASP-800-25KSI-4 121 AA-19 4443 800.0 551.7 555.6 551.3 546.2 72.1 2.40 0.00 0.00															
	Frame 20	SUAN	WASP-000-25K3F5	121	104-20	CPPP	000.0	199.5	199.9	799.0	799.1	12.1	2.40	-0.05	0.00

HTML Reports: HTML Reports, which allows easy report export to clients. HTML formatting is a recognized standard for documents that allows the reports to be easily emailed and viewed in a web browser.

Status Display: New system status display with context sensitive menus allows faster navigation to control functions by testing machine.

System Status		- C -	Left System Status	
Frame State Specimen Name Setpoint Average		ess Time Creep (%) Alarms	Frame State Specimen Name Setpoint Average Top Middle Bottom User Stress	Time Creep (%) Ala
ul-4501 Hav H4502 Hin ul-4503 Hin ul-4503 Hin ul-4504 Hin ul-4504 Hin	1200.7. 1300.8. 1300.8. 1300.8 75. 4416 Karmatt		M 4501 Agpt Load 60 Readings Per Minute M 4502 Idle M 4503 Idle M 4505 Idle M 4505 Idle 1200 6 1200 8 1200.7 1200 8 1230 175 4 75 75 75 2 75 4 75 75 75 1 75 75 75 1 75 75 75 1 75 75	00.0 LC

Furnace Logging: New furnace logging routines with additional parameters logged.

"Date","Avg Tmp","Ctrl T/C","S.P.","Rate","Err","Pwr","P Term","I Term","D Term","% STop","% SMid","% SBot","% Top","% Mid","% Bot","Top T/C","Mid T/C","Bot T/C","Wall T/C","ACV","Iso Tmp"

Running Test Modifications: Modify test termination parameters on a running test.

Creep Loading Validation: Additional checking has been added to the Hot and Cold Loading reports to programmatically determine if a test may have extensometer setup or binding issues. After the test is hot stepped loaded the system will evaluate the loading data and if any issues are detected it will show the test frames data in red, indicating an issue and display an "Hid" in the Alarms column. The test will continue normally, but this alerts the operator that this test should be examined to determine if it should be continued.

Elongation Methods: Added the 4D, 4W, 5D, 5W, and two custom elongation methods.

Time Resolution: Increased time resolution from seconds to mS to allow for the faster data acquisition rates of the **SIGMA** Hardware.

Compatibility: Fully supports all previous and current WinCCS hardware.

Languages: New language support features that integrate the language prompts into the code base thereby eliminating the prompt file issues of having version mismatches in the prompt files. The new language capability also supports multiple languages. This same method is also incorporated into the GEN3 hardware firmware eliminating the need for long prompt file downloads.

Setup: System setup improvements that allow frame setups to be copied to ease large system deployment.

Load Calibration and Verifications: Improved load calibration / verification routines that allow for multiple runs as required in ASTM E4.

Test Specifications: Improve the test specification editor to clarify the shutdown and pass-fail requirements for discontinue tests.

System Status: New system status file. The previous versions wrote a system status file in CSV format every minute for external systems to use for reporting test status. Version 8 adds three types of system status files as detailed below:

Pre Version 8 CSV Format:

Lab Number, State, Average Temperature, Time in Hours, % Creep

New CSV Format:

Frame, Lab Number, State, Average Temperature, Time in Hours, % Creep, Load, Top, Middle, Bottom and User.

Version 8 XML Format:

System Status: The system status file allows user systems to access the system status. Previous versions had a simple CSV format with limited parameters. Version 8 allows the choice of the original, enhanced CSV or and XML file. The XML file contains the most amount of information and should be used for any new implementations.